Learning Probability Distributions
نویسندگان
چکیده
Learning Probability Distributions
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملUnimodal Probability Distributions for Deep Ordinal Classification
Probability distributions produced by the crossentropy loss for ordinal classification problems can possess undesired properties. We propose a straightforward technique to constrain discrete ordinal probability distributions to be unimodal via the use of the Poisson and binomial probability distributions. We evaluate this approach in the context of deep learning on two large ordinal image datas...
متن کاملLearning Continuous Probability Distributions with Symmetric Diffusion Networks
in this article we present symmetric diffusion networks, a family of networks that instantiate the principles of continuous, stochastic, adaptive and interactive propagation of information. Using methods of Markovlon diffusion theory, we formalize the activation dynamics of these networks and then show that they can be trained to reproduce entire muitivariote probability distributions an their ...
متن کاملMotor Learning Characterized by Changing Lévy Distributions
The probability distributions for changes in transverse plane fingertip speed are Lévy distributed in human pole balancing. Six subjects learned to balance a pole on their index finger over three sessions while sitting and standing. The Lévy or decay exponent decreased as a function of learning, showing reduced decay in the probability for large speed steps and was significantly smaller in the ...
متن کامل